ON THE IMPRESSION OF A RIGID
 DIE INTO AN ELASIIC SPHERE

(0 VDAVLIVANII RHRSTKOGO SHTAMPA V UPRUGUIU SEERU)

PMM Vol.28, N2 6, 1964, pp. 1101-1105

N.Kh. ARUTIUNIAN and B.L. ABRAMIAN
(Yerevan)
(Rece1ved July 10, 1964)

The problem of the impression of a rigid die into an elastic sphere is investigated (Section 1). The solution of this problem reduces to the determination of some coefficients in "coupled" seriesequations, containing Legendre polynomials. A

Fig. 1 method is indicated, which allows the reduction of the solution of the obtained "coupled" seriesequations to the solution of an infinite system of innear equations (Section 2).

As an example, the compression of an elastic sphere under the uniform normal loading is investigated (Section 3), with the lower half of the sphere resting in a rigid semispherical recess. Tables and curves are presented for the stresses and displacements.

The problems of the impression of two rigid dies into an elastic sphere and of the axisymmetrical compression of an elastic sphere with a rigid ring girdle, are discussed in other papers by the authors and by Babloian [1 and 2].

1. Let us investigate the axisymmetric problem of the impression of a rigid die into an elastic sphere of radius R (Fig.l).
We shall assume, for simplicity of presentaicion, that under the die, as well as elsewhere, there are no tangential stresses, and that the normal stresses on the sphere surface are given.

With such formulation, the boundary conditions of the problem, in a spherical coordinate system ρ, θ, φ, will have the form, with $\rho=R$.

$$
\begin{array}{ccc}
U_{\rho}=f^{*}(\theta) & (0 \leqslant \theta<\alpha) \\
\tau_{f, \theta}=0 & (0 \leqslant \theta \leqslant \pi), & \sigma_{\rho}=\psi^{*}(\theta) \tag{1.1}
\end{array}(\alpha<\theta \leqslant \pi)
$$

Here, U_{0} is the radial component of displacement $\tau_{\rho \theta}$ and σ_{ρ} are, respectively, the tangential and normal stresses, $f^{*}(\theta)^{\rho \theta}$ is a continuous function which determines the shape of the die surface, ${ }^{*}(\theta)$ is a piecewise continuous function with a ilmited variation in the indicated interval which prescribes the distribution of normal stresses on the surface of the elastic sphere outside the die, and a is a parameter indicating the size of the die.

The equilibrium equations, in spherical coordinates, with axial symmetry and in the absence of body forces are of the form

$$
\begin{align*}
& (\lambda+2 \mu) \sin \theta \frac{\partial \Delta}{\partial \theta}+\mu \frac{\partial}{\partial \rho}\left(2 p \omega_{\varphi} \sin 0\right)=0 \tag{1.2}\\
& (\lambda-2 \mu) \rho^{2} \sin \theta \frac{\partial \Delta}{\partial \rho}-\mu \frac{\partial}{\partial \theta}\left(2 \partial \omega_{\varphi} \sin \theta\right)=0
\end{align*}
$$

Here λ and μ are Lamés elastic constants, ω_{\varnothing} is the rotation component, Δ is the volumetric expansion

$$
\begin{gather*}
\omega_{\varphi}=\frac{1}{2 \rho}\left[\frac{\partial}{\partial \rho}\left(\rho U_{\theta}\right)-\frac{\partial U_{\rho}}{\partial \theta}\right] \\
\Delta=\frac{1}{\rho^{2} \sin \theta}\left[\frac{\partial}{\partial \rho}\left(\rho^{2} U_{\rho} \sin \theta\right)+\frac{\partial}{\partial \theta}\left(\rho U_{\theta} \sin \theta\right)\right] \tag{1.3}
\end{gather*}
$$

and U_{θ} is the meridional component of displacement.
Changing from the coordinate θ to the coordinate $5=\cos \theta$ and solving Equations (1.2) for the displacements U_{ρ} and U_{θ}, we obtain Expressions

$$
U_{\rho}(\rho, \xi)=A_{0} \frac{\rho}{R}+
$$

$$
\begin{equation*}
+\sum_{k=1}^{\infty}\left\{-k A_{k}\left(\frac{\rho}{h}\right)^{k-1}-\frac{\lambda k+\mu(k-2)}{\lambda(k+3)+\mu(k+5)}(k+1) C_{k}\left(\frac{\rho}{k}\right)^{k+1}\right\} P_{k}(\xi) \tag{1.4}
\end{equation*}
$$

$$
U_{\theta}(\rho, \xi)=\sum_{k=1}^{\infty}\left[A_{k}\left(\frac{\rho}{R}\right)^{k-1}+C_{k}\left(\frac{\rho}{R}\right)^{k+1}\right] \sqrt{1-\xi^{2}} P_{k}^{\prime}(\xi) \quad\left(P_{k}^{\prime}(\xi)=\frac{d}{d \xi} p_{k}(\xi)\right)
$$

Here, $P_{\mathrm{k}}(\xi)$ are Legendre polynomials [3], and A_{0}, A_{k} and C_{k} are the interration constants, to be determined form the boundary conditions (1.1).
2. To determine the integration constants, using the relations (1.4) and known equations, expressing the stresses σ_{ρ} and $T_{\rho \theta}$ in terms of the displacement components U_{ρ} and U_{θ}, we get ${ }^{\rho}$

$$
\begin{gather*}
\sigma_{\rho}=\frac{3 \lambda+2 \mu}{R} A_{0}-\frac{2 \mu}{R} \sum_{k=1}^{\infty} P_{k}(\xi)\left\{k(k-1) A_{k}\left(\frac{\rho}{R}\right)^{k-2}+\right. \\
\left.+\frac{\lambda\left(k^{2}-k-3\right)+\mu(k+1)(k-2)}{\lambda(k+3)+\mu(k+5)}(k+1) C_{k}\left(\frac{\rho}{R}\right)^{k}\right\} \tag{2.1}\\
\tau_{\rho \theta}=\frac{2 \mu}{R} \sum_{k=1}^{\infty} P_{k}^{\prime}(\xi) \sqrt{1-\xi^{2}}\left\{(k-1) A_{k}\left(\frac{P}{R}\right)^{k-2}+\right. \\
\left.+\frac{\lambda(k+2) k+\mu\left(k^{2}+2 k-1\right)}{\lambda(k+3)+\mu(k+5)} C_{k}\left(\frac{\rho}{R}\right)^{k}\right\} \tag{2.2}
\end{gather*}
$$

Satisfying the boundary condition (1.1), we obtain the following expression for the coeffecients C_{k} :

$$
\begin{equation*}
C_{k}=-\frac{(k-1)[\lambda(k+3)+\mu(k+5)]}{\lambda k(k+2)+\bar{\mu}\left(k^{2}+2 k-1\right)} A_{k} \quad(k-1,2, \ldots) \tag{2.3}
\end{equation*}
$$

and the following "coupled" series-equations for the determination of the coefficients A_{k} :

$$
\begin{equation*}
\sum_{k=1}^{\infty} B_{k} P_{k}(\xi)=f(\xi) \quad\left(1 \geqslant \xi>\xi_{1}=\cos \alpha\right) \tag{2.4}
\end{equation*}
$$

$$
\sum_{k=0}^{\infty} B_{k}(k-1) \frac{\lambda\left(2 k^{2}+4 k+3\right)+2 \mu\left(k^{2}+k+1\right)}{\lambda(2 k+1) k+2 \mu\left(2 k^{2}-1\right)} P_{k}(\xi)=\frac{\psi(\xi)}{2 \mu} \quad\left(\xi_{1}>\xi \geqslant-1\right)
$$

In addition, we define

$$
\begin{equation*}
f^{*}(0)=f(\xi), \quad \psi^{*}(\theta)=\frac{\psi(\xi)}{R} \tag{2.5}
\end{equation*}
$$

$A_{0}=B_{0}, \quad A_{k}=-\frac{\lambda k(k+2)+\mu\left(k^{2}+2 k-1\right)}{\lambda k(2 k+1)+2 \mu\left(2 k^{2}-1\right)} B_{k} \quad(k=1,2,3, \ldots)$
Thus, the solution of the problem under investigation has been reduced to the determination of the unknown coefficients B_{k} in the coupled" seriesequations (2.4) containing Legendre polynomials.

We shall present the "coupled"series-equations (2.4) in the form

$$
\begin{equation*}
\sum_{k=0}^{\infty} B_{k} P_{k}(\xi)=f(\xi) \quad\left(1 \geqslant \xi>\xi_{1}\right), \quad \sum_{k=0}^{\infty}\left(k+\frac{1}{2}\right) B_{k} P_{k}(\xi)=F(\xi) \quad\left(\xi_{1}>\xi \geqslant-1\right) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
F(\xi) & =\frac{\psi(\xi)}{2 \mu}+\frac{1}{2} \sum_{k=0}^{\infty} \frac{B_{k} P_{k}(\xi)}{\lambda(2 k+1) k+2 \mu\left(2 k^{2}-1\right)} \times \\
& \times\left[3 \lambda(k+2)+2 \mu\left(2 k^{3}+2 k^{2}-2 k+1\right)\right] \tag{2.8}
\end{align*}
$$

"Coupled" series-equations of the form (2.7) have been investigated in the work of Babloian [4]. The solution of such series-equations, where $f(5)$ and $F(\xi)$ are given functions, is obtained from

$$
\begin{gather*}
B_{k}=\frac{\sqrt{2}}{\pi} \int_{0}^{\alpha} \cos \left(k+\frac{1}{2}\right) \varphi d \varphi \frac{d}{d \varphi} \int_{\cos \varphi}^{1} f(\xi)(\xi-\cos \varphi)^{-1 / 2} d \xi+ \\
+\frac{\sqrt{2}}{\pi} \int_{\alpha}^{\pi} \cos \left(k+\frac{1}{2}\right) \varphi d \varphi \int_{-1}^{\cos \varphi} F(\xi)(\cos \varphi-\xi)^{-1 / 2} d \xi \quad\binom{\alpha=}{k=0,1,2, \ldots} \tag{2.9}
\end{gather*}
$$

Using Equation (2.9) and considering that the unknown cocfficient B_{k}, according to (2.8), enters in the function $F(\xi)$, the solution of the "coupled" series-equations (2.4) for the determination of the integration constants A_{k} (or the coefficients B_{k}), after some transformations, is reduced to the solution of an infinite system of linear equations of the following form:

$$
\begin{equation*}
A_{k}=\sum_{p=1}^{\infty} L_{h, r} 1_{p}+M_{k} \quad(k=1,2, \ldots) \tag{2.10}
\end{equation*}
$$

where L_{k}, and M_{k} are obtained from

$$
\begin{gather*}
u_{k i}=-\frac{\sqrt{2}}{\pi}\left(b_{k}+\frac{a_{h} b_{0}}{a_{0}}\right) \frac{\lambda k(k+2)+\mu\left(k^{2}+2 k-1\right)}{\lambda k(2 k+1)+2 \mu\left(2 k^{2}-1\right)} \quad(k=1,2, \ldots) \tag{2.11}\\
L_{k,}=-\frac{\left[\lambda k(k+2)-\mu\left(k^{2}+2 k-1\right)\right]\left[3 \lambda(p+2)+2 \mu\left(2 p^{3}+2 p^{2}-2 p+1\right)\right]}{\left[\lambda k(2 k+1)+2 \mu\left(2 k^{2}-1\right)\right](2 p+1)\left[\lambda p(p+2)+\mu\left(p^{2}+2 p-1\right)\right.} I_{k p} \\
(k=1,2, \ldots ; p=1,2, \ldots .) \tag{2.12}
\end{gather*}
$$

Here

$$
\begin{equation*}
\sqrt{2} a_{0}=\pi+(3 \lambda / \mu+1)\left(\pi-\sqrt{1-\xi_{1}^{2}}-\cos ^{-1} \xi_{1}\right) \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
\sqrt{\bar{g}_{k}}=\left(3 \frac{\lambda}{\mu}+1\right)\left\{\frac{\sin \left[(k+1) \cos ^{-1} \dot{\xi}_{1}\right]}{k+1}+\frac{\sin \left(k \cos ^{-1} \xi_{1}\right)}{k^{-}}\right\}(k=1,2, . \quad .) \tag{2.14}
\end{equation*}
$$

$$
\begin{align*}
i_{k}= & \int_{0}^{\alpha} \cos \left(h+\frac{1}{2}\right) \varphi d \varphi \frac{d}{d \varphi} \int_{\cos \varphi}^{1} f(\xi)(\xi-\cos \varphi)^{-1 / 2} d \xi+ \tag{2.15}\\
& +\frac{1}{2 \mu} \int_{\alpha}^{\pi} \cos \left(k+\frac{1}{2}\right) \varphi d \varphi \int_{-1}^{\cos \varphi} \varphi(\xi)(\cos \varphi-\xi)^{-1 / 2} d \xi\binom{\alpha=}{k=0,1,2, \ldots} \\
I_{n i,}= & \frac{a_{h} \xi_{1}}{a_{0}} \int_{\alpha}^{\pi} \cos \frac{\varphi}{2} \cos \left(p+\frac{1}{2}\right) \varphi d \varphi+\int_{\alpha}^{\pi} \cos \left(k+\frac{1}{2}\right) \varphi \cos \left(p+\frac{1}{2}\right) \varphi d \varphi \tag{2.16}
\end{align*}
$$

Solving the infinite system (2.10) and using the obtained values of A_{x}, the constant A_{0} is determined from

$$
\begin{equation*}
A_{0}=\frac{b_{0}}{a_{0}}+\frac{\mu}{a_{0}(3 \lambda+\mu)} \sum_{p=1}^{\infty} A_{p} \frac{3 \lambda(p+2)+2 \mu\left(2 p^{3}+2 p^{2}-2 p+1\right)}{(2 p+1)\left[\lambda p(p+2)+\mu\left(p^{2}+2 p-1\right)\right.} a_{p} \tag{2.17}
\end{equation*}
$$

Equation (2.17) can be obtained directly from (2.9), using $k=0$ and solving for A_{0}.
3. As an example, we shall investigate the problem of the compression of an elastic sphere, resting in a rigid semispherical recess, and loaded on its free surface by a uniformly distributed nor-

Fig. 2

$$
\xi_{1}=0, \quad \frac{\lambda}{\mu}=2, \quad N=\left\{\begin{array}{l}
10 \tag{3.3}\\
31
\end{array} \quad f(\xi)=0, \quad \psi(\xi)=-q\right.
$$

We tabulate below some values of $A_{k}{ }^{\circ}=A_{t} \mu / q$ for a series of k values

k	$=$1 2 3 4 5 6 $A \tilde{k}^{\wedge}$ $=\left\{\begin{array}{ccccc}-0.0872 & 0.0424 & 0.0295 & -0.0199 & -0.0159 \\ -0.0883 & 0.0431 & 0.0307 & -0.0199 & -0.0166\end{array}\right) 0.0128$ $(N=31)$

[^0]Table continued

k	$=13$	14	15	16	17	18		
$A k^{\circ}$	$=-0.0055$	0.0052	0.0047	-0.0046	-0.0041	0.0041	$(N=31)$	
k	$=19$	20	21	22	23	24		
$A k^{\circ}$	$=0.0036$	-0.0037	-0.0032	0.0033	0.0029	-0.0031	$(N=31)$	
k	$=$	26	27	28	29	30	31	
$A k^{\circ}$	$=-0.0026$	0.0029	0.0023	-0.0027	-0.0021	0.0026	0.0018	$(N=31)$

Using these values, and Equation (2.17), we get

$$
\begin{equation*}
A_{0}=-0.0976 q / \mu \quad \text { for } N=10, \quad A_{0}=-0.0998 q / \mu \quad \text { for } N=31 \tag{3.4}
\end{equation*}
$$

Calculating the $\sigma_{k^{*}}$ coefficients from Equation (2.3), the stresses $\sigma_{\rho}, \tau_{\rho \theta}$ and the displacements at any point in the sphere can be determined from Equations (2.1), ($x .2$) and (1.4).

Fig. 3
We present the values of the stress $\sigma_{\rho}{ }^{\circ}=\sigma_{p} R / 2 q$, calculated at some points in the sphere, and also the values of the displacenents $U_{\rho} \quad=U_{\rho} \mu / q$ and $U_{8}^{\circ}=U_{\theta} \mu / q$, calculated at some points on the sphere surface and the equatorial plane

$$
\begin{gathered}
(R, 1) \\
(1 / 2 R, 1) \\
\sigma_{\rho}=\left\{\begin{array}{ccccccc}
-0.503 & -0.497 & -0.475 & -0.385 & (1 / 2 R,-1) & (R, 1 / 2 \sqrt{3}) & (R, 1 / 2) \\
-0.517 & -0.510 & -0.486 & -0.342 & -0.451 & -0.433 & (N=10)
\end{array}\right. \\
\sigma_{\rho}=\left\{\begin{array}{cccccc}
(1 / 2 R, 1 / 2 \sqrt{3}) & (1 / 2 R-1 / 2) & (1 / 2 R, 0) & (1 / 2 R,-1 / 2) & (1 / 2 R,-1 / 2 \sqrt{3} \overline{3}) \\
-0.469 & -0.366 & -0.318 & -0.436 & -0.408 & (N=10) \\
-0.480 & -0.373 & -0.326 & -0.446 & -0.417 & (N=31)
\end{array}\right.
\end{gathered}
$$

Table continued

$$
\begin{aligned}
& (R,-1) \quad(R,-1 / 2 \sqrt{3}) \quad(R,-1 / 2) \quad(R, 0) \\
& U_{\rho}^{\circ}=\left\{\begin{array}{ccccc}
-0.210 & -0.191 & -0.173 & - & (N=10) \\
-0.197 & -0.192 & -0.171 & -0.018 & (N=31)
\end{array}\right. \\
& (R, 0) \quad(1 / 2 R, 0) \quad(0,0) \\
& U_{\theta}{ }^{\circ}=\left\{\begin{array}{llll}
-0.090 & -0.098 & -0.087 & (N=10) \\
-0.088 & -0.099 & -0.088 & (N=31)
\end{array}\right.
\end{aligned}
$$

As a pictorial representation of the distribution of normal stresses, Fig. 3 shows the curves of the normal stresses o_{p}.

We should note that the investigation of the question of the regularity of the infinite system of linear equations (2.10), or the reduction of this system to a regular system [5], presents mathematical difficulties.

To obtain an approximate solution, an abridged system of equations (3.2) was used. This system was solved with $N=10$ and $N=31$, where N is the number of equations in the abridged system. The calculations show that the values of the stresses and displacements, presented above for these two cases, differ by a negligible amount.

BIBLIOGRAPHY

1. Abramian, B.L., Arutiunian, N.Kh. and Babloian. A.A., O dvukh kontaktnykh zadachakh dia uprugoi sfery (On two contact problems for an elastic sphere). SMN Vol.28, No 4, 1964.
2. Arutiunian, N.Kh., Abramian, B.I. and Babloian, A.A., 0 szhatii uprugoi. sphery s zhestkoi kol'tsevol obolmol (On the compression of an elastic sphere with a rigid ring girdle). Izv. Akar, Nauk ArmSSR, Vol.17, № 3, 1964.
3. Gobson, E.V., Teorila sfericheskikh 1 ellipsoidal'nykh funktsii (The Theory of Spherical and Elliptical Functions). Izd.inostr.lit., M., 1952.
4. Babloian, A.A., Reshenie nekotorykh parnykh riadov (The solution of some "coupled" series). Dokl.Akad.Nauk ArmSSR, Vol.39, № 3, 1964.
5. Kantorovich, L.V. and Krylov, V.I., Priblizhennye metody vysshego analiza (Approximate Methods of Advanced Analysis). Gostekhizdat, M-L., 1950.

[^0]: *) The calculations were performed at the Computer Center of the ArmSSR Academy of Science and the Yerevan state University by the center coworker A.Bardanian and processed by the coworker of the Institute of Mathematics and Mechanics A.A.Babloian. The authors regard it as their pleasant duty to record their thanks.

